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Introduction

There are a few phenomenon which the classical mechanics
failed to explain.

1. Stability of an atom
2. Spectral series of Hydrogen atom
3. Black body radiation

Max Planck in 1900 at a meeting of German Physical
Society read his paper “On the theory of the Energy
distribution law of the Normal Spectrum”. This was the start

of the revolution of Physics i.e. the start of Quantum
Mechanics.



Quantum Mechanics

It is a generalization of Classical Physics that includes
classical laws as special cases.

Quantum Physics extends that range to the region of small
dimensions.

Just as ‘c’ the velocity of light signifies universal constant, the
Planck's constant characterizes Quantum Physics.

h=6.65x10"""erg.sec
h=6.625x10"* Joule.sec



Quantum Mechanics

It is able to explain

1. Photo electric effect

2. Black body radiation

3. Compton effect

4. Emission of line spectra

The most outstanding development in modern science was
the conception of Quantum Mechanics in 1925. This new
approach was highly successful in explaining about the

behavior of atoms, molecules and nuclei.



Photo Electric Effect

The emission of electrons from a metal plate when illuminated
by light or any other radiation of any wavelength or frequency

(suitable) is called photoelectric effect. The emitted electrons
are called ‘photo electrons’.
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Photo Electric Effect

Experimental findings of the photoelectric effect

1.

2.

There is no time lag between the arrival of light at the metal
surface and the emission of photoelectrons.

When the voltage is increased to a certain value say V_, the
photocurrent reduces to zero.

Increase in intensity increase the number of the
photoelectrons but the electron energy remains the same.

Photo

Current \

V. Voltage




Photo Electric Effect

4. Increase in frequency of light increases the energy of the
electrons. At frequencies below a certain critical frequency
(characteristics of each particular metal), no electron is

emitted.
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Einstein’s Photo Electric Explanation
The energy of a incident photon is utilized in two ways

1. A part of energy is used to free the electron from the atom
known as photoelectric workfunction (W,).

2. Other part is used in providing kinetic energy to the emitted

electron . | .
—myv-
2

hv =W, Jrlmv2
2

This is called Einstein’s photoelectric equation.



hAv=W.+KE...
hv=hv,+KE__

KE =h(v—-V,))

If V<V, , no photoelectric effect

W, =hy, =%
A,
1 = he 3 12400 ;1

"W, W, (eV)



If V. is the stopping potential, then

KEmax = h(v _v())
eV =hv—-hy,
y = hv  hv,

e e

It is in form of y =mXx+ ¢ . The graph with V(, on y-axis
and V on x-axis will be a straight line with slope } /e



Photons

Einstein postulated the existence of a particle called a photon,
to explain detailed results of photoelectric experiment.

Ep:hv=h—/lc

Photon has zero rest mass, travels at speed of light

Explains “instantaneous” emission of electrons in photoelectric
effect, frequency dependence.



Compton Effect

When a monochromatic beam of X-rays is scattered from a
material then both the wavelength of primary radiation
(unmodified radiation) and the radiation of higher wavelength
(modified radiation) are found to be present in the scattered
radiation. Presence of modified radiation in scattered X-rays is

called Compton effect. E'=hv'
LA scattered
incident € " Photon
E=hv
photon ol 0 o
- my cos ¢ hv'
hv electron o cosd
p= 7 ! 2 O V

mv sin ¢ recoiled electron



From Theory of Relativity, total energy of the recoiled electron
withv~cis - .
E=mc"=K+m,c"

2 2
K=mc" —m,"

mc

Ry

K=mc’ —1

0 2/ 2
\/1 —V-j€

Similarly, momentum of recoiled electron is
m,v

\/l—vz/c2

2
—-m,c

—

my =




Now from Energy Conversation

hv =h v'+mac2 -1 (i)

=
\/1 —v*/c?

From Momentum Conversation

hv  hv' m,v
— —0059+ COS(I) (i) along x-axis

¢ \/1

and

hv' . m,v :
0= —Sln9— \/1 y =sing (i)  along y-axis
— C




Rearranging (ii) and squaring both sides

' : 2_2
(hv_hv 0039) =" _cos’ ¢ (iv)

c c 1-v*/c?
Rearranging (iii) and squaring both sides
w' oY s 3
7 sin@ | = m",v —SIn” @ (V)
C 1—-v°/c”
Adding (iv) and (v)

Y (hv'Y 2k mv’
— +| — | ————cosf = T (vi)

C & 1-v*/c”

From equation (i)

hv  hv' m,c
——+mc=

¢ ¢ \/l—vz/cz




On squaring, we get

(h—v) +(h—v) +m§c2—2h~VV +2hm, (v—V')= b

2 2 4. 2
c c c 1-v/c

(vii)
Subtracting (vi) from (vii)
2hw'

2

C

(1-=cos@)+2hm (v—-v')=0

2hm (v —v') = 2”"1’” (1—cos@)
.2

hvy'

2

C

m.(v—-v')=

(1—cosB)



But V=— and Vie— SO,

(l—i) —(l—cosO)
A A AA

A' ﬂ.«
. L
moc( .) —(1—cos0)

A-A=AA= L(l —cos0)

m,c

A is the Compton Shift.

It neither depends on the incident wavelength nor on the
scattering material. It only on the scattering angle i.e. €

h

is called the Compton wavelength of the electron
m ¢  and its value is 0.0243 A.



Experimental Verification
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photon ¢ -~ Bragg's X-ray
Monochromatic . X Spectrometer
X-ray Source
N
_------- J:}-.@ ............
L/ Graphite
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1. One peak is found at same
position. This is unmodified radiation

2. Other peak is found at higher
wavelength. This is modified signal of

low energy.
3. A/ increases with increase in 6.

!

~ Incndent
randintion
I




Compton effect can’t observed in Visible Light

/
A= (1-cosf)= 0.0243 (1- cosd) A
m c

AA is maximum when (1- cosB) is maximum i.e. 2.

A= 0.08A

max

So Compton effect can be observed only for radiation having
wavelength of few A.

ForA = 1A AdL ~1%
For A = 5000A A ~ 0.001% (undetectable)



Pair Production

When a photon (electromagnetic energy) of sufficient
energy passes near the field of nucleus, it materializes into
an electron and positron. This phenomenon is known as pair

roduction.
P @

/\/V\7 (' )

|
Photon ”
Nucleus (+ve) *®

In this process charge, energy and momentum remains
conserved prior and after the production of pair.



The rest mass energy of an electron or positron is 0.51
MeV (according to E = mc?).

The minimum energy required for pair production is 1.02
MeV.

Any additional photon energy becomes the kinetic energy
of the electron and positron.

The corresponding maximum photon wavelength is 1.2 pm.
Electromagnetic waves with such wavelengths are called

gamma rays (7).



Pair Annihilation

When an electron and positron interact with each other due
to their opposite charge, both the particle can annihilate
converting their mass into electromagnetic energy in the
form of two ¥ - rays photon.

e +e Dy+y

Charge, energy and momentum are again conversed. Two

j £ - photons are produced (each of energy 0.51
MeV plus half the K.E. of the particles) to conserve the
momentum.



Pair production cannot occur in empty space

From conservation of energy S
hv =2m c”y

here m, is the rest mass and ¥ = l/ \/ -y ,»"'cz

hv/c

In the direction of motion of the photon, the momentum is

conserved if I
1%
27 =2 pcosé
C



hv =2cpcosf
Momentum of electron and positron is
p=myy
Equation (i) now becomes

hv =2m cvycos@

hv = 2m002Y(}’_ )cos 6
c

But %<l and cosf <1

hv <2m c’y



But conservation of energy requires that
hv =2m c’y

Hence it is impossible for pair production to conserve both
the energy and momentum unless some other object is
involved in the process to carry away part of the initial
photon momentum. Therefore pair production cannot occur
in empty space.



Wave Particle Duality

Light can exhibit both kind of nature of waves and particles
so the light shows wave-particle dual nature.

In some cases like interference, diffraction and polarization
it behaves as wave while in other cases like photoelectric
and compton effect it behaves as particles (photon).



De Broglie Waves

Not only the light but every materialistic particle such as
electron, proton or even the heavier object exhibits wave-
particle dual nature.

De-Broglie proposed that a moving particle, whatever its
nature, has waves associated with it. These waves are
called “matter waves’.

Energy of a photon is
E=hy

For a particle, say photon of mass, m

E=mec



2
mc” = hy

, hc
me” =—

Ao,

mc

Suppose a particle of mass, m is moving with velocity, v then
the wavelength associated with it can be given by

i=i or /1=]—1

my p

(i) fv=0= A =c means that waves are associated with
moving material particles only.

(i) De-Broglie wave does not depend on whether the moving
particle is charged or uncharged. It means matter waves are
not electromagnetic in nature.



Wave Velocity or Phase Velocity

When a monochromatic wave travels through a medium,
its velocity of advancement in the medium is called the

wave velocity or phase velocity (V).
@
Vp - ;

where @ = 2mv is the angular frequency

and k= 2—” is the wave number.



Group Velocity

In practice, we came across pulses rather than
monochromatic waves. A pulse consists of a number of
waves differing slightly from one another in frequency.

The observed velocity is, however, the velocity with which
the maximum amplitude of the group advances in a
medium.

So, the group velocity is the velocity with which the energy
in the group is transmitted (V).

The individual waves travel “inside” the group with their

h locities.
phase velocities . 7

g_ﬁ



Relation between Phase and Group Velocity

dw d
V. =— =—(kV
¢ = dk( )

dv,

»

Ve =V, +k

2 dV

=V + £
& P A d2r/A)
1 dV

— P

V.=V +
& P 2d1/A)




V2=Vp+/1 1”
——dA
%)

dv,

Vg =VI’—.A' dﬂl«

In a Dispersive medium V  depends on frequency

, w
l.e. ;7& constant

dv .
So, A p i is positive generally (not always).

=V, <V, generally



dv,
dA

v, =V, - A

In a non-dispersive medium ( such as empty space)

@
— = constant =V p

k
dV

= —==0

dA
=V =¥

g P




Phase Velocity of De-Broglie’s waves

According to De-Broglie's hypothesis of matter waves
h

A=—
my
2w 2mn
wave number = = i (i)
A h
If a particle has energy E, then corresponding wave will
have frequency E
V=—

h

: 2rk
then angular frequency willbe @ =27V = -,—
1



_ 2mmc?

iy (if)
h
Dividing (i)by (1)~ 5 2 4
= X
k h 2mmy
CZ
Vp = 7

But v is always < c (velocity of light)
(i) Velocity of De-Broglie’s waves V,>c¢ (not acceptable)
(i) De-Broglie's waves (V/,) will move faster than the

particle velocity (v) and hence the waves would left the
particle behind.



Group Velocity of De-Broglie’s waves

The discrepancy is resolved by postulating that a moving
particle is associated with a “wave packet” or “wave
group”, rather than a single wave-train.

A wave group having wavelength A is composed of a
number of component waves with slightly different
wavelengths in the neighborhood of A.

Suppose a particle of rest mass m_, moving with velocity v
then associated matter wave will have

_ 2mmce” _— 27mmy

h h

m,
W where M= T
1-v°/c



2
27mm ¢ 27mom v

0= d —
h\/l—vz/c2 o Iz\/l—vz/c2

On differentiating w.r.t. velocity, v

dw 2mm, v )
— - |

dv h(l = vz/c?')/2

dk  2mm, (i)




Dividing (i) by (ii)

dw dv 2mmv

dv dk 2mm,
d—w=v=V
dk g

Wave group associated with a moving particle also
moves with the velocity of the particle.

Moving particle = wave packet or wave group



Davisson & Germer experiment of electron
diffraction

If particles have a wave nature, then under appropriate
conditions, they should exhibit diffraction

Davisson & Germer measured the wavelength of electrons

This provided experimental confirmation of the matter waves
proposed by de Broglie



Davisson and Germer Experiment
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Incident Beam

40V 44V 48V 54V 60V 64V 68V

Current vs accelerating voltage has a maximum (a bump or
kink noticed in the graph), i.e. the highest number of electrons
is scattered in a specific direction.

The bump becomes most prominent for 54 V at ¢ ~ 50°



According to de Broglie, the wavelength associated with an
electron accelerated through V volts is

/1=12.28;1

JV

Hence the wavelength for 54 V electron

1=1228 0

J5a

From X-ray analysis we know that the nickel crystal acts as a
plane diffraction grating with grating space d = 0.91 A
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Here the diffraction angle, ¢ ~ 50°

The angle of incidence relative to the family of Bragg's plane

o180 2—50 il




From the Bragg's equation
A=2dsiné
A =2%(0.91 4)xsin 65° =1.65 A

which is equivalent to the A calculated by de-Broglie's
hypothesis.

It confirms the wavelike nature of electrons



Electron Microscope: Instrumental Application
of Matter Waves
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Resolving power of any optical instrument is proportional to the
wavelength of whatever (radiation or particle) is used to
illuminate the sample.

An optical microscope uses visible light and gives 500x
magnification/200 nm resolution.

Fast electron in electron microscope, however, have much
shorter wavelength than those of visible light and hence a
resolution of ~0.1 nm/magnification 1,000,000x can be achieved
in an Electron Microscope.



Heisenberg Uncertainty Principle

It states that only one of the “position” or “momentum” can be
measured accurately at a single moment within the instrumental
limit.

or

It is impossible to measure both the position and momentum

simultaneously with unlimited accuracy.

Ax — uncertainty in position
Ap.—> uncertainty in momentum

then h h
- > h=—

AxAp . 2 > e

h

The product of Ax & Ap _of an object is greater than or equal to 5



If AX is measured accurately i.e. Ax >0 = Ap —> oo

The principle applies to all canonically conjugate pairs of quantities in
which measurement of one quantity affects the capacity to measure
the other.

Like, energy E and time t. "

AEAt 2 —
2

and angular momentum L and angular position 6

ALAG?Zﬁ

2



Determination of the position of a particle by a microscope

Suppose we want to determine accurately the position and
momentum of an electron along x-axis using an ideal microscope
free from all mechanical and optical defects.

The limit of resolution of the
microscope is
A

Ax = ——
28In i ,
here / is semi-vertex angle of the U

cone of rays entering the objective —

lens of the microscope. 1‘4 Scattered

Ax is the order of uncertainty in the M‘) O Photon

x-component of the position of the | .. . N\

electron. Photon Recoiled electron




We can't measure the momentum of the electron prior to illumination.

So there is uncertainty in the measurement of momentum of the
electron.

The scattered photon can enter the microscope anywhere between
the angular range +/ to —i.

The momentum of the scattered photon is (according to de-Broglie)

g h
A
Its x-component can be given as
2B . .
Ap. =—sIni
A

The x-component of the momentum of the recoiling electron has the
same uncertainty, Ap.‘, (conservation of momentum)



The product of the uncertainties in the x-components of position and
momentum for the electron is

Ax.Ap, = ;{ X 21 sin i
" 2sini A
h
AXAP\ — h > 5

This is in agreement with the uncertainty relation.



Applications of Heisenberg Uncertainty Principle

(i) Non-existence of electron in nucleus

Order of radius of an atom ~ 5 x10"®* m
-15
If electron exist in the nucleus then (Ar)nm =5x10"m

AxAp, 2 g
h
(Ax)max (Apx )min = 5
h -20 4
(AP, ) min = v 1.1X10™" kg.m.s

then

E = pc=20MeV . relativistic



Thus the kinetic energy of an electron must be greater than 20
MeV to be a part of nucleus

Experiments show that the electrons emitted by certain unstable
nuclei don’t have energy greater than 3-4 MeV.

Thus we can conclude that the electrons cannot be present
within nuclei.



Concept of Bohr Orbit violates Uncertainty Principle

h
Ax.Ap 2 —
# 2
pz
E=—
o 2m
AF = pAp _ mvAp :EAP
m m At
AE.At = Ax.Ap



According to the concept of Bohr orbit, energy of an electron in a
orbit is constant i.e. AE = 0.

AEAr>"

2

= Af — oo
All energy states of the atom must have an infinite life-time.
But the excited states of the atom have life—time ~ 10 sec.

The finite life-time At gives a finite width (uncertainty) to the energy
levels.



Two-slit Interference Experiment

. o = L
S"to <— 1 meter — % e
{3_’+ ........................................ % 0. 5 e .:o
Laser 0 O ®ep.5 0
Slit ‘
Sourcs Detector # é"""o"o ®

® "..0’ 0o e°®

Rate of photon arrival = 2 x 108/sec
-] @ [

(3]
Time lag = 0.5 x 10® sec

Spatial separation between photons =0.5x 10¢c =150 m




— Taylor's experiment (1908): double slit experiment with very dim
light: interference pattern emerged after waiting for few weeks

— interference cannot be due to interaction between photons, i.e.
cannot be outcome of destructive or constructive combination of
photons

= interference pattern is due to some inherent property of each
photon - it “interferes with itself” while passing from source to
screen

— photons don't “split” —
light detectors always show signals of same intensity

— slits open alternatingly: get two overlapping single-slit diffraction
patterns — no two-slit interference

— add detector to determine through which slit photon goes:
= no interference

— interference pattern only appears when experiment provides
no means of determining through which slit photon passes



Double slit experiment — QM interpretation

— patterns on screen are result of distribution of photons
— no way of anticipating where particular photon will strike

— impossible to tell which path photon took — cannot assign
specific trajectory to photon

— cannot suppose that half went through one slit and half through
other

— can only predict how photons will be distributed on screen (or
over detector(s))

— interference and diffraction are statistical phenomena
associated with probability that, in a given experimental setup, a
photon will strike a certain point

— high probability = bright fringes
— low probability = dark fringes



Double slit expt. -- wave vs quantum

wave theory

pattern of fringes:

— Intensity bands due to
variations in square of
amplitude, A?, of resultant
wave on each point on
screen

role of the slits:

— to provide two coherent
sources of the secondary
waves that interfere on the
screen

quantum theory

pattern of fringes:
— Intensity bands due to

variations in probability, P,
of a photon striking points
on screen

role of the slits:
— to present two potential

routes by which photon can
pass from source to screen



Wave function

The quantity with which Quantum Mechanics is concerned is the
wave function of a body.

Wave function, g is a quantity associated with a moving particle. It
Is a complex quantity.

|\Y|? is proportional to the probability of finding a particle at a
particular point at a particular time. It is the probability density.

2
VI =y*y
W is the probability amplitude.

Thusif W =A+iB then Y*=A-iB
=y =y *y=4"-i’B* =4 +B°



Normalization

|W|? is the probability density.
The probability of finding the particle within an element of volume d7T

Wy |” dr

Since the particle is definitely be somewhere, so

Il v dr =1 .+ Normalization

A wave function that obeys this equation is said to be normalized.



Properties of wave function

1. It must be finite everywhere.
If @ is infinite for a particular point, it mean an infinite large

probability of finding the particles at that point. This would
violates the uncertainty principle.

2. It must be single valued.
If ¢ has more than one value at any point, it mean more than

one value of probability of finding the particle at that point
which is obviously ridiculous.

3. It must be continuous and have a continuous first derivative
everywhere.

Lig oy Jdy Jy

ox dy Oz

4. |t must be normalizable.

must be continuous




Schrodinger’s time independent wave equation

One dimensional wave equation for the waves associated with a
moving particle is

= 2
—’(Ii't—p\‘) = (x)

W(x,t)= Ae" and y(x,t=0)= Ae *

Y is the wave amplitude for a given x.

A is the maximum amplitude.
A is the wavelength

From (i)




Dt
m.v
3%
> 2m | —myv
I mv 12
= i 5 - ~
A h~ h
1 _2m,K
A h’

where K is the K.E. for the non-relativistic case
Suppose E is the total energy of the particle
and V is the potential energy of the particle

I Zm,,

A Ak

(iii)



Equation (ii) now becomes

oy _ 4r’
o> K
ay/ 2m
“(E-V 0
whaaron L fe

This is the time independent (steady state) Schrodinger's wave
equation for a particle of mass m_,, total energy E, potential

energy V, moving along the x-axis.

If the particle is moving in 3-dimensional space then

0’y at// 8!// 2m
ox’ 8y" az h’

= (E-V)y=0



Vi + 2, (E-V)y=0

5
h...

This is the time independent (steady state) Schrodinger's wave
equation for a particle in 3-dimensional space.

For a free particle V = 0, so the Schrodinger equation for a
free particle
2m

Viw+—2Ey =0
h..




Schrodinger’s time dependent wave equation

Wave equation for a free particle moving in +x direction is

—L(Et-px)

W =Ae’ ()

where E is the total energy and p is the momentum of the particle
Differentiating (i) twice w.r.t. x

azl// p2 5 ) azw "
= — 3 |/ — —"' "
ox” h* v =prY I ox” -
Differentiating (i) w.r.t. t
Jy  iE L 0y
—=—— = Ey =ih—
ot Ji v V= ot N



For non-relativistic case

E = K.E. + Potential Energy

2

E=L +v_
2m

::szp—-t//+Va// (iv)
2m
Using (ii) and (iii) in (iv)
in— al// & .t
o  2m ox’

This is the time dependent Schrodinger's wave equation for a
particle in one dimension.

Vy



Linearity and Superposition

If , and y, are two solutions of any Schrodinger equation of a
system, then linear combination of g, and y, will also be a solution

of the equation..
V=ay,+aW, isalsoa solution

Here a, & a, are constants
Above equation suggests:

(1) The linear property of Schrodinger equation
(if) w, and y, follow the superposition principle



If P, is the probability density corresponding to y, and P, is the
probability density corresponding to y,

Then Y —VY,+V¥, due to superposition principle
Total probability will be i

P=y [ =y, +y,

= (Y, +W2)*(Wl +¥,)

=W, +Y)W, +Y)
=YL, VYL VYL VLY,

P=R+P,+y,y, +y.y,
P#P+P,
Probability density can't be added linearly

|2




Expectation values

Expectation value of any quantity which is a function of 'x’ ,say f(x)
IS given by

<f(x)> = J.f(x) v |2dx for normalized y

Thus expectation value for position ‘X’ is

o0

<XxX> = jxlwlzdx

-—00

Expectation value is the value of ‘X’ we would obtain if we
measured the positions of a large number of particles described by
the same function at some instant t' and then averaged the
results.



Q. Find the expectation value of position of a particle having wave
function y = ax betweenx=0 & 1, ¢ = 0 elsewhere.

Solution '

v dx = azjx3dx

0

|
<x>=x
0

Lo

= g
X
=a’| —
_.4.4()

ra

a
<X>=—



Operators

(Another way of finding the expectation value)

An operator is a rule by means of which, from a given function
we can find another function.

For a free particle = Bi—p%)
!// — Aeh
Then
W _Lpy
ox h
Here
- (i)
[ Ox

is called the momentum operator



Similarly a'/’ i
L - _F
ot h v
Here A
E =ih 3— (ii)
ot

is called the Total Energy operator

Equation (i) and (ii) are general results and their validity is the
same as that of the Schrodinger equation.



If a particle is not free then

E=KE+U =E=X_4U

2m0
9 1(hoY :
h—= +U R0 B = I §
l ot Zm(i ax)
0 h* 0’
h—=-— F {7
l ot 2m ox*
iha—w-:— - a-",V+Ut,1/
ot 2m ox°

This is the time dependent Schrodinger equation



If Operator is Hamiltonian

H=—h581+U
2m ox”

Then time dependent Schrodinger equation can be written as
Hy =Ey

This is time dependent Schrodinger equation in Hamiltonian
form.



Eigen values and Eigen function

Schrodinger equation can be solved for some specific values of
energy i.e. Energy Quantization.

The energy values for which Schrodinger equation can be solved
are called 'Eigen values’ and the corresponding wave function are
called ‘Eigen function’.

Suppose a wave function (y) is operated by an operator ‘a’ such
that the result is the product of a constant say ‘a’ and the wave
function itself i.e. A
ay =ay
then A
y is the eigen function of &

A

a is the eigen value of &



Q. Suppose ¥/ = e is eigen function of operator

the eigen value.
Solution. : 2
G

dx”

SN A T

G — - — - e""

4 dx” dx” £")

Gy =4e™

Gy =4y

The eigen value is 4.

dx

ra

then find



Particle in a Box

Consider a particle of rest mass m_ enclosed in a one-dimensional

box (infinite potential well). s o
Boundary conditions for Potential i :

0 for O0<x<L 2

V(x)= { particle

> for 0>x>L °
Boundary conditions for y V=0

0 for x =0

W = { x=0 X =L

0 for x=L

Thus for a particle inside the box Schrodinger equation is
A W 2m0 Ey =0 (i) =V =0 inside



h 2«

A= =T (k is the propagation constant)
p k
1/2 E
— = = "o
h h
=k’ = 2ng (ii)
h‘.
Equation (i) becomes
a-'/,/ +k’y =0 (iii)
0x”

General solution of equation (iii) is

W(x)= Asinkx+ Bcoskx (iv)



Boundary condition says ¢ =0 whenx =0

W(0)= Asink.0+ Bcosk.0
0=0+A.1 = B=10

Equation (iv) reduces to
W(x)= Asin kx (V)
Boundary condition says ¢y =0 whenx=L
W(L)= Asink.L
O0=Asink.L
A#0 =sink.L=0

= sink.L=sinm



kL =nrm

ni
=T R
Put this in Equation (v) -
I,I/(X) = Asin nT'

Whenn#0ie.n=1, 2, 3...., this gives @y = 0 everywhere.

Put value of k from (vi) in (ii)

k2:2m(E
h

nxw ) _2mE
L h’

-

(88




rJ

N hok~ _ 11"/7" il
2m, 8m, L

Wheren= 1, 2, 3....
Equation (vii) concludes

1. Energy of the particle inside the box can’t be equal to zero.
The minimum energy of the particle is obtained for n = 1

3 h*
8m L

if £, >0 momentum —0 ie. Ap—0

E,

(Zero Point Energy)

= Ax > o

Bdllx,_ =L since the particle is confined in the box of
dimension L.



2.

Thus zero value of zero point energy violates the

Heisenberg's uncertainty principle and hence zero value is
not acceptable.

All the energy values are not possible for a particle in

potential well.
Energy is Quantized

E, are the eigen values and 'n’ is the quantum number.

Energy levels (E,) are not equally spaced.

n=3
n=2
n=1




W (x)= Asm%

Using Normalization condition

[lw, () dx=

L
A° Ism @dx—l

0

A’ & =1 :>A=\/z
(Z) =i

The normalized eigen function of the particle are

W, (x)= \/' sm—



Probability density figure suggest that:

1. There are some positions (nodes) in the box that will never be
occupied by the particle.

2. For different energy levels the points of maximum probability
are found at different positions in the box.

|y, |? is maximum at L/2 (middle of the box)
|Y,|? is zero L/2.



Particle in a Three Dimensional Box

Eigenenergy E=F +E +FE.

h*
8ml’

B = (n +n +n)

Eigen function W=y Wy
XV yv z

. hax . Ny | nmz
W =AA A sin———-sin SIN ———

L L L
3

2| . nmx . B . nz
W =|.[— | sin Sin —— §in ——

L L L L




